If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=2021
We move all terms to the left:
x^2-(2021)=0
a = 1; b = 0; c = -2021;
Δ = b2-4ac
Δ = 02-4·1·(-2021)
Δ = 8084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8084}=\sqrt{4*2021}=\sqrt{4}*\sqrt{2021}=2\sqrt{2021}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2021}}{2*1}=\frac{0-2\sqrt{2021}}{2} =-\frac{2\sqrt{2021}}{2} =-\sqrt{2021} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2021}}{2*1}=\frac{0+2\sqrt{2021}}{2} =\frac{2\sqrt{2021}}{2} =\sqrt{2021} $
| 24n=232 | | 3x-38+2x+20=180 | | y=80*5 | | 13+7c=55 | | 5x–9–½(8x–6)=25 | | 145+3x=180 | | -5m-9m=-92-20 | | 3x+145=90 | | 7x²=70x=0 | | 5-5w=-3w+9 | | 105+7=-5z-9z | | -47+20=-2a-7a | | y=-9(0)—5/6 | | 7/8g-5=37=g=48 | | -2-20=2z+9z | | (4x-2)/5-(x-7)/2=4 | | 7x=2021 | | 1/4g=7/3 | | (3y+1)(2y+2)48=180 | | –6(c+19)=–18 | | 1/6h+2=7 | | 7/6x+4/3=-11/3 | | x=2=1/2(9x-2) | | 4p–2=18 | | 5(y+5)-y=42 | | 0=-2y-13y+12 | | 2(3x+12)(6x+9)=0 | | 3v+7v+9v=3v+7v+9v | | 11+6c=47 | | 11/v=5/7 | | -12r+10=58=r=-4 | | 3x-12=6×+24 |